
Jupiter Limit Order V2
Smart Contract Security
Assessment

April 2024

Prepared for:
Jupiter

Prepared by:
Offside Labs
Ronny Xing

Haijiang Xie

Zhipeng Xu

Contents

1 About Offside Labs 2

2 Executive Summary 3

3 Summary of Findings 4

4 Key Findings and Recommendations 5
4.1 Referral Token Accounts May Not Be Claimable 5
4.2 Keeper Does Not Use The Referral Token Accounts Correctly as the Fee Recipient 6
4.3 Informational and Undetermined Issues . 7

5 Disclaimer 10

1 Jupiter

1 About Offside Labs

Offside Labs is a leading security research team, composed of top talented hackers from both
academia and industry.

We possess a wide range of expertise in modern software systems, including, but not limited
to, browsers, operating systems, IoT devices, and hypervisors. We are also at the forefront
of innovative areas like cryptocurrencies and blockchain technologies. Among our notable
accomplishments are remote jailbreaks of devices such as the iPhone and PlayStation 4, and
addressing critical vulnerabilities in the Tron Network.

Our team actively engages with and contributes to the security community. Having won and
also co-organized DEFCON CTF, the most famous CTF competition in the Web2 era, we also
triumphed in the ParadigmCTF 2023within theWeb3 space. In addition, our efforts in respon-
sibly disclosingnumerous vulnerabilities to leading tech companies, suchasApple,Google, and
Microsoft, have protected digital assets valued at over $300million.

In the transition towardsWeb3, Offside Labs has achieved remarkable success. Wehave earned
over$9million in bugbounties, and threeof our innovative techniqueswere recognizedamong
the top 10 blockchain hacking techniques of 2022 by the Web3 security community.

https://offside.io/

https://github.com/offsidelabs

https://twitter.com/offside_labs

2 Jupiter

https://offside.io/
https://github.com/offsidelabs
https://twitter.com/offside_labs

2 Executive Summary

Introduction

Offside Labs completed a security audit of Jupiter Limit Order V2 project, starting on April 3rd,
2024, and concluding on April 3rd, 2024.

Project Overview

Jupiter Limit Order V2: Jupiter Limit Order provides users with the simplest way to place limit
orders on Solana and receive tokens directly in the users’ self-custody wallets when the order
is filled. This V2 is its second brand-new version.

Audit Scope

The assessment scope contains mainly the smart contracts of the limit-order-2 program and
keeper client for the Jupiter Limit Order V2 project.

The audit is based on the following specific branches and commit hashes of the codebase repos-
itories:

• Jupiter Limit Order V2
• Branch: main
• Commit Hash: 34654f001af0b07b9b25ab8ea175a2a50eba2e91
• Codebase Link

We listed the files we have audited below:

• Jupiter Limit Order V2
• programs/limit-order-2/src/*.rs
• keeper/src/*.ts

Findings

The security audit revealed:

• 0 critical issue
• 0 high issues
• 0 medium issues
• 2 low issues
• 5 informational issues

Further details, including the nature of these issues and recommendations for their remedia-
tion, are detailed in the subsequent sections of this report.

3 Jupiter

https://github.com/jup-ag/limit-order-2/commit/34654f001af0b07b9b25ab8ea175a2a50eba2e91

3 Summary of Findings

ID Title Severity Status

01 Referral Token Accounts May Not Be Claimable Low Acknowledged

02 Keeper Does Not Use the Referral Token Accounts
Correctly as the Fee Recipient Low Fixed

03 Maker Account Type Validation Is Inconsistent Informational Fixed

04 expired_at Check Conditions Are Inconsistent Informational Fixed

05 update_fee Ix Does Not Check the Fee Cap Informational Fixed

06 fee_authority Can Be Loaded From Ctx Directly Informational Fixed

07 flash_fill_order Instruction Does Not Check the
output_mint Informational Fixed

4 Jupiter

4 Key Findings and Recommendations

4.1 Referral TokenAccountsMayNot Be Claimable

Severity: Low Status: Acknowledged

Target: Smart Contract Category: Data Validation

Description

If initializing an order with a referral, all fees will be sent to the referral token account.

The issue is that the initialize_order instruction’s referral account only checks for
token::authority = REFERRAL_AUTHORITY and the output_mint . This could allow a
malicious user to input an un-claimable referral account.

Impact

This is a griefing attack, which will result in the admin being unable to withdraw the proto-
col fees.

Proof of Concept

We can find that the referral_token_account is a specific PDA account in:

101 #[account(

102 mut,

103 seeds = [REFERRAL_ATA_SEED, referral_account.key().as_ref(),

mint.key().as_ref()],↪

104 bump,

105 token::mint = mint,

106 token::authority = project

107)]

108 referral_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

programs/referral/src/instructions/claim.rs#L101-L108

A malicious user can initialize any other token account for REFERRAL_AUTHORITY .

Recommendation

Input the ReferralAccount of the referral programtocheck if the referral_token_account

is claimable.

Mitigation Review Log

Jupiter Team: Acknowledged. Only partner will input this token account. There is no rea-
son why they wan to input an un-claimable referral account, like no benefits for them at

5 Jupiter

https://github.com/TeamRaccoons/referral/blob/150dda7823fc3783e98f554fcb6b4a5ad76d0f99/program/programs/referral/src/instructions/claim.rs#L101-L108

all.

Offside Labs: It’s a griefing attack without profit. Even if users do not introduce a partner,
there is still a minimum fee rate requirement. Therefore, users (attackers) passing in this
token account has no impact on them, but it can cause damage to the protocol’s revenue
(fee transferred to an unclaimable address). I think we can reserve such a plan, so that if
this issue really occurs with non-dust losses, we can directly upgrade the Referral program
to retrieve these stuck fees.

4.2 KeeperDoesNotUseTheReferral TokenAccountsCorrectly as theFee
Recipient

Severity: Low Status: Fixed

Target: Keeper Client Category: Logic

Description

The keeper flashFillOrder function uses the following code to create ATA of the fee ac-
count by the CreateMode::Idempotent .

116 preInstructions.push(

117 createAssociatedTokenAccountIdempotentInstruction(

118 taker,

119 order.feeAccount,

120 FEE_AUTHORITY,

121 order.outputMint,

122 order.outputTokenProgram

123)

124);

keeper/src/fillOrder.ts#L116-L124

But the CreateAssociatedTokenAccount instruction will still check if the owner of the
ATA is the FEE_AUTHORITY , even if that ATA already exists.

Impact

If the order’s fee_account originates from a referral, then this instruction will fail, caus-
ing the entire fill order transaction to consistently fail.

6 Jupiter

https://github.com/jup-ag/limit-order-2/blob/34654f001af0b07b9b25ab8ea175a2a50eba2e91/keeper/src/fillOrder.ts#L116-L124

Proof of Concept

97 if associated_token_account.base.owner != *wallet_account_info.key

{↪

98 let error = AssociatedTokenAccountError::InvalidOwner;

99 msg!("{}", error);

100 return Err(error.into());

101 }

solana-labs/solana-program-library/associated-token-
account/program/src/processor.rs#L97-L101

Recommendation

The owner of the fee_account could be either FEE_AUTHORITY or REFERRAL_AUTHORITY

.

Mitigation Review Log

Jupiter Team: Commit c554bdf8bea9179c2f6d540d655daa39582a6b88

Offside Labs: Fixed.

4.3 Informational andUndetermined Issues

Maker Account Type Validation Is Inconsistent

Severity: Informational Status: Fixed

Target: Smart Contract Category: Logic

It uses SystemAccount to check the maker account in the flash_fill_order ix.

98 maker: SystemAccount<'info>,

programs/limit-order-2/src/instructions/flash_fill_order.rs#L98

But it uses maker: UncheckedAccount<'info> to bypass the case where the account is a
PDA in the cancel_order ix.

Jupiter Team: Commit d776ef5c747f39303101f69114fdf69f5455ffb9

Offside Labs: Fixed.

expired_at Check Conditions Are Inconsistent

Severity: Informational Status: Fixed

Target: Smart Contract Category: Logic

7 Jupiter

https://github.com/solana-labs/solana-program-library/blob/9ddfe54cc051759f1c619aecf7ba31d93f28d846/associated-token-account/program/src/processor.rs#L97-L101
https://github.com/solana-labs/solana-program-library/blob/9ddfe54cc051759f1c619aecf7ba31d93f28d846/associated-token-account/program/src/processor.rs#L97-L101
https://github.com/jup-ag/limit-order-2/pull/1/commits/c554bdf8bea9179c2f6d540d655daa39582a6b88
https://github.com/jup-ag/limit-order-2/blob/34654f001af0b07b9b25ab8ea175a2a50eba2e91/programs/limit-order-2/src/instructions/flash_fill_order.rs#L98
https://github.com/jup-ag/limit-order-2/pull/1/commits/d776ef5c747f39303101f69114fdf69f5455ffb9

84 pub fn validate_pre_flash_fill(&self, making_amount: u64) ->

Result<()> {↪

85 ...

86 require!(expired_at > now, LimitOrderError::OrderExpired);

87 }

programs/limit-order-2/src/state.rs#L84

This expired_at in the validate_pre_flash_fill function should be >= in-
stead of > , due to the inconsistency with the now > self.expired_at check in the
validate_cancel_order function.

Jupiter Team: Commit 5af58d09174ac499c4156bde6f8160c73cd5a76f

Offside Labs: Fixed.

update_fee Ix Does Not Check the Fee Cap

Severity: Informational Status: Fixed

Target: Smart Contract Category: Code QA

9 ctx.accounts.fee_authority.set_inner(Fee {

programs/limit-order-2/src/instructions/update_fee.rs#L9

It’s better to add a fee cap check to restrict excessively high unreasonable config.

Jupiter Team: Commit dd06f878454bcf3dc76c8e3cff6fc471249f1eb1

Offside Labs: Fixed.

fee_authority Can Be Loaded FromCtx Directly

Severity: Informational Status: Fixed

Target: Smart Contract Category: Code QA

52 let (fee_authority, _) = Pubkey::find_program_address(&[FEE_SEED],

&crate::ID);↪

programs/limit-order-2/src/instructions/initialize_order.rs#L52

fee_authority is also the fee: Box<Account<'info, Fee>> of the InitializeOrder

(the current ctx.accounts).

Jupiter Team: Commit 6cdd864988fad3d4677b3c181fafd3b983081e36

Offside Labs: Fixed.

8 Jupiter

https://github.com/jup-ag/limit-order-2/blob/34654f001af0b07b9b25ab8ea175a2a50eba2e91/programs/limit-order-2/src/state.rs#L84
https://github.com/jup-ag/limit-order-2/pull/1/commits/5af58d09174ac499c4156bde6f8160c73cd5a76f
https://github.com/jup-ag/limit-order-2/blob/34654f001af0b07b9b25ab8ea175a2a50eba2e91/programs/limit-order-2/src/instructions/update_fee.rs#L9
https://github.com/jup-ag/limit-order-2/pull/1/commits/dd06f878454bcf3dc76c8e3cff6fc471249f1eb1
https://github.com/jup-ag/limit-order-2/blob/34654f001af0b07b9b25ab8ea175a2a50eba2e91/programs/limit-order-2/src/instructions/initialize_order.rs#L52
https://github.com/jup-ag/limit-order-2/pull/1/commits/6cdd864988fad3d4677b3c181fafd3b983081e36

flash_fill_order Instruction Does Not Check the output_mint

Severity: Informational Status: Fixed

Target: Smart Contract Category: Data Validation

130 output_mint: Box<InterfaceAccount<'info, Mint>>,

programs/limit-order-2/src/instructions/flash_fill_order.rs#L130

The flash_fill_order instruction does not sufficiently validate output_mint .
Although maker_output_mint_account and taker_output_mint_account do check
output_mint , both of these token accounts are provided by the taker and are not included
in the order .

And if the output_mint is spl_token::native_mint::ID , the order.fee_account

also does not validate output_mint .

However, this issue isNOT exploitable because the Order::transfer_from_taker will call
sync_native on the fee_account , and if fee_account ’s is_native is false, it will
fail directly.

To ensure safety in future codes, its a good idea to add constraint to make sure the
output_mint is equal to order.output_mint .

Jupiter Team: Commit eafaaf8ee725b320b1540622e9bcaf7ad00aea89

Offside Labs: Fixed.

9 Jupiter

https://github.com/jup-ag/limit-order-2/blob/34654f001af0b07b9b25ab8ea175a2a50eba2e91/programs/limit-order-2/src/instructions/flash_fill_order.rs#L130
https://github.com/jup-ag/limit-order-2/pull/1/commits/eafaaf8ee725b320b1540622e9bcaf7ad00aea89

5 Disclaimer

This audit report is provided for informational purposes only and is not intended to be used
as investment advice. While we strive to thoroughly review and analyze the smart contracts
in question, we must clarify that our services do not encompass an exhaustive security exam-
ination. Our audit aims to identify potential security vulnerabilities to the best of our ability,
but it does not serve as a guarantee that the smart contracts are completely free from security
risks.

We expressly disclaim any liability for any losses or damages arising from the use of this re-
port or from any security breaches that may occur in the future. We also recommend that our
clients engage in multiple independent audits and establish a public bug bounty program as
additional measures to bolster the security of their smart contracts.

It is important to note that the scope of our audit is limited to the areas outlined within our en-
gagement and does not include every possible risk or vulnerability. Continuous security prac-
tices, including regular audits and monitoring, are essential for maintaining the security of
smart contracts over time.

Please note: we are not liable for any security issues stemming from developer errors or mis-
configurations at the time of contract deployment; we do not assume responsibility for any
centralized governance risks within the project; we are not accountable for any impact on the
project’s security or availability due to significant damage to the underlying blockchain infras-
tructure.

By using this report, the client acknowledges the inherent limitations of the audit process and
agrees that our firm shall not be held liable for any incidents thatmay occur subsequent to our
engagement.

This report is considered null and void if the report (or any portion thereof) is altered in any
manner.

10 Jupiter

	About Offside Labs
	Executive Summary
	Summary of Findings
	Key Findings and Recommendations
	Referral Token Accounts May Not Be Claimable
	Keeper Does Not Use The Referral Token Accounts Correctly as the Fee Recipient
	Informational and Undetermined Issues

	Disclaimer

