
Jupiter Aggregator
Smart Contract Security
Assessment

April 2024

Prepared for:
Jupiter

Prepared by:
Offside Labs
Ronny Xing

Haijiang Xie

Yao Li
Siji Feng

Contents

1 About Offside Labs 2

2 Executive Summary 3

3 Summary of Findings 4

4 Key Findings and Recommendations 5
4.1 Pre-calculation of the RaydiumAMM Is Inaccurate in calculate_swap_ in_amount 5
4.2 Inaccurate Fee Calculation in apply_exact_out_fees_if_applicable 6
4.3 Missing SyncNative When Token Is WSOL in set_token_ledger 7
4.4 Informational and Undetermined Issues . 8

5 Disclaimer 11

1 Jupiter

1 About Offside Labs

Offside Labs is a leading security research team, composed of top talented hackers from both
academia and industry.

We possess a wide range of expertise in modern software systems, including, but not limited
to, browsers, operating systems, IoT devices, and hypervisors. We are also at the forefront
of innovative areas like cryptocurrencies and blockchain technologies. Among our notable
accomplishments are remote jailbreaks of devices such as the iPhone and PlayStation 4, and
addressing critical vulnerabilities in the Tron Network.

Our team actively engages with and contributes to the security community. Having won and
also co-organized DEFCON CTF, the most famous CTF competition in the Web2 era, we also
triumphed in the ParadigmCTF 2023within theWeb3 space. In addition, our efforts in respon-
sibly disclosingnumerous vulnerabilities to leading tech companies, suchasApple,Google, and
Microsoft, have protected digital assets valued at over $300million.

In the transition towardsWeb3, Offside Labs has achieved remarkable success. Wehave earned
over$9million in bugbounties, and threeof our innovative techniqueswere recognizedamong
the top 10 blockchain hacking techniques of 2022 by the Web3 security community.

https://offside.io/

https://github.com/offsidelabs

https://twitter.com/offside_labs

2 Jupiter

https://offside.io/
https://github.com/offsidelabs
https://twitter.com/offside_labs

2 Executive Summary

Introduction

Offside Labs completed a security audit of Jupiter Aggregator smart contracts, starting on
April 17th, 2024, and concluding on April 28th, 2024.

Jupiter Aggregator Project Overview

Jupiter Aggregator is a decentralized exchange aggregator designed to provide the best rates
for swapping SPL tokens on the Solana blockchain. It routes trades through multiple liquidity
sources to ensure optimal prices, low slippage, and efficient transaction execution. Users ben-
efit from its seamless interface, deep liquidity, and the ability to perform complex token swaps
in a single transaction.

Audit Scope

The assessment scope containsmainly the smart contracts of the jupiter-aggregator-program
for the Jupiter project.

The audit is based on the following specific branches and commit hashes of the codebase repos-
itories:

• jupiter-aggregator-program
• Branch: main
• Commit Hash: 7c3a9ae6cbe9034f6108cf2bb260ac578667940c
• Codebase Link

We listed the files we have audited below:

• jupiter-aggregator-program
• programs/jupiter/src/*

Findings

The security audit revealed:

• 0 critical issue
• 0 high issues
• 1 medium issues
• 2 low issues
• 4 informational issues

Further details, including the nature of these issues and recommendations for their remedia-
tion, are detailed in the subsequent sections of this report.

3 Jupiter

https://github.com/jup-ag/jupiter-aggregator-program/commit/7c3a9ae6cbe9034f6108cf2bb260ac578667940c

3 Summary of Findings

ID Title Severity Status

01 Pre-calculation of the Raydium AMM Is Inaccurate
in calculate_swap_in_amount Medium Fixed

02 Inaccurate Fee Calculation in
apply_exact_out_fees_if_applicable Low Fixed

03 Missing SyncNative When Token Is WSOL in
set_token_ledger Low Acknowledged

04 Integrity Checks on RoutePlanStep in
execute_route_plan Informational Acknowledged

05 Error in Calculating Slippage for Small Amount or
Large Slippage Informational Fixed

06 Token-2022 Support Should Not Be Enabled in Exact
Out Mode Informational Fixed

07 Redundant PDA Signature in
serum::create_open_orders IX Informational Fixed

4 Jupiter

4 Key Findings and Recommendations

4.1 Pre-calculationof theRaydiumAMMIs Inaccurate incalculate_swap_
in_amount

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

For instructions related to exact_out , such as exact_out_route , it is necessary to first
calculate the corresponding input amount using the expected out_amount . This approach
allows for deriving a complete route plan. Finally, each step’s swap is executed by calling
an external dex based on the respective out_amount .

Themain issue is that, for the Swap::Raydium swap step, it uses the raydium_calculate_

in_amount function to get the input amount.

It directly uses the value of the token balance to calculate the invariant K , as shown in the
pseudocode below:

let swap_source_amount =

token::accessor::amount(&accounts.pool_coin_token_account)?;↪

let swap_destination_amount =

token::accessor::amount(&accounts.pool_pc_token_account)?;↪

let K = swap_source_amount * swap_destination_amount;

However, in the Raydium AMM, the invariant calculation actually relies on the fol-
lowing pseudocode, if the AMM doesn’t enable the Orderbook: raydium-io:raydium-
amm/program/src/math.rs#L294-L335

K = (pc_amount - amm.state_data.need_take_pnl_pc) * (coin_amount -

amm.state_data.need_take_pnl_coin)↪

Impact

Since the swap in/out amounts for the exact out swap are entirely based on pre-calculated
values, and there is no additional amount verification during the actual external swap ex-
ecution, inaccurate pre-calculations could result in users paying more in amount than ex-
pected, which typically leads to two outcomes:

1. The in amount actually paid by the userwill be greater than the expected maximum_in_

amount , which equates to a loss for the user, especially when they encounter potential
MEV.

2. If RaydiumAMM is used as an intermediate step in the route, the swap transactionmay
fail due to insufficient token amounts in the intermediate token accounts.

5 Jupiter

https://github.com/jup-ag/jupiter-aggregator-program/blob/d23f35e65bb939adbaa97915a6748fc224870787/programs/jupiter/src/math/raydium.rs#L9
https://github.com/jup-ag/jupiter-aggregator-program/blob/d23f35e65bb939adbaa97915a6748fc224870787/programs/jupiter/src/math/raydium.rs#L9
https://github.com/raydium-io/raydium-amm/blob/b7a5c32d59f51b7956f3afcbe7b14b9e52d7ba3a/program/src/math.rs#L294-L335
https://github.com/raydium-io/raydium-amm/blob/b7a5c32d59f51b7956f3afcbe7b14b9e52d7ba3a/program/src/math.rs#L294-L335

Recommendation

Get the state from the currentAMMaccount and thenaccurately calculate K according
to the Raydium AMM implementation.

Mitigation Review Log

Jupiter Team: Mitigation commit

In addition, we disabled exact out for pool with activemm, which amm_info.status == 5

, because that’s only 5 of them.

Offside Labs: Fixed.

4.2 Inaccurate Fee Calculation in apply_exact_out_fees_if_applicable

Severity: Low Status: Fixed

Target: Smart Contract Category: Math

Description

Both exact_in and exact_out transactions use the same formula in calculate_fee

to calculate platform fees. This formula multiplies platform_fee_bps directly with the
transaction amount, which is in_amount in the exact_out and out_amount in the
exact_in . However, the application of this formula should differ between the two trans-
action types due to the point in the transaction flow where fees are applied.

let A be the USD value of the user inputs, and let R be the fee bps. Assume that A and R are
the same under the following exact_in and exact_out scenarios:

• For exact_in transactions: out_fee_value = 𝐴 × 𝑅, out_value_1 = 𝐴 × (1 − 𝑅)
• For exact_out transactions: out_value_2 = 𝐴

1+𝑅 , in_fee_value = 𝐴 × 𝑅
1+𝑅

Because𝐴 × 𝑅 > 𝐴 × 𝑅
1+𝑅 , therefore out_fee_value > in_fee_value, which means the

fee of the exact_out transactions is slightly less than the nominal fee of the exact_in

transactions.

Andwe can also get the following derivation: out_value_1 < out_value_2 ⇔ 1−𝑅2 <
1 ⇔ 𝑅2 > 0, whichmeans users always get more output tokens in the exact_out trans-
actions with the same input amounts.

Impact

This discrepancy in fee calculation leads to inconsistent fee collection between exact_in

and exact_out transactions. As a result, the expected revenue from transaction fees is
potentially reduced.

6 Jupiter

https://github.com/jup-ag/jupiter-aggregator-program/commit/6445c163c8bfe7ab7399318b3add73e3128e9d53

Proof of Concept

Assuming platform_fee_bps (R) is set to the maximal value 2.55%, and A is USD value
of the user inputs.

• For exact_in : The user receives𝐴 × (1 − 0.0255).
• For exact_out : Theuser receives 𝐴

1+0.0255 , leading toanactual fee rate of approximately
1 − 1

1+0.0255 × 100% = 2.486%, which is less than the intended 2.55%.

Recommendation

For exact_out transactions, modify the fee calculation formula to A * R / (1 - R)

in the apply_exact_out_fees_if_applicable function. This ensures the fee reflects the
intended rate and aligns fee calculations across transaction types.

Mitigation Review Log

Jupiter Team: PR-164

Offside Labs: Fixed. After mitigation for exact_out transactions:

• out_value_2 = 𝐴
1+ 𝑅

1−𝑅
= 𝐴 × (1 − 𝑅)

• in_fee_value = 𝐴 × (1 − 𝑅) × 𝑅
1−𝑅 = 𝐴 × 𝑅

Now in_fee_value of the exact_out is equal to out_fee_value of the exact_in .

4.3 Missing SyncNativeWhen Token IsWSOL in set_token_ledger

Severity: Low Status: Acknowledged

Target: Smart Contract Category: Logic Error

Description

If token_account is WSOL , set_token_ledger does not invoke SyncNative before
setting account of token ledger:

760 pub fn set_token_ledger(ctx: Context<SetTokenLedger>) -> Result<()> {

761 ctx.accounts.token_ledger.token_account =

ctx.accounts.token_account.key();↪

762 ctx.accounts.token_ledger.amount =

ctx.accounts.token_account.amount;↪

763 Ok(())

764 }

programs/jupiter/src/lib.rs#L760-764

7 Jupiter

https://github.com/jup-ag/jupiter-aggregator-program/pull/164/commits/b83e9e5ae54ce0168eab7ead6fb88dd19585ee9a
https://github.com/jup-ag/jupiter-aggregator-program/blob/7c3a9ae6cbe9034f6108cf2bb260ac578667940c/programs/jupiter/src/lib.rs#L760-764

Impact

If token_account is WSOL and its token amount is not synchronized with lamports in
that account, set_token_ledger may set the initial token_ledger.amount to a smaller
value.

This can lead to IXs ending with _with_token_ledger consuming more tokens than ex-
pected during the swap operation.

Recommendation

When token is WSOL , it is recommended to add SyncNative before setting the token
amount in set_token_ledger . This ensures that the token ledger reflects the correct
token amount.

Similarly, another optional fix is to also confirm lamports synchronization before getting
to_amount_before in the swap_wrapper function, if the destination_token_account

is WSOL .

Mitigation Review Log

Jupiter Team: Acknowledged.

Addition of system program would be a breaking change: programs/jupiter/src/account_-
structs.rs#L248

Inaddition, the tokenprogramtransfers thatwill occurwhile swappingwouldnot cause the
extra lamports to be suddenly involved, so it seems like this user error does not have much
effect. This also does not protect from user doing something wrong after so we decide not
to fix.

Offside Labs: Yes, agree. There won’t be any additional sync operations that could cause
sudden changes to the token amountwithin the system’s own instructions (i.e., between the
set_token_ledger and _with_token_ledger series of instructions).

It might be a good idea to add a SyncNative IX before the set_token_ledger IX in the
relevant SDK. Thiswill prevent breaking change to the existing contract and avoid the issue
about user errors.

4.4 Informational andUndetermined Issues

Integrity Checks on RoutePlanStep in execute_route_plan

Severity: Informational Status: Acknowledged

Target: Smart Contract Category: Integrity Check

The execute_route_plan function operates under the assumption that the last executed

8 Jupiter

https://github.com/jup-ag/jupiter-aggregator-program/blob/652c2773e0d2afcb2c8b766a4f66a35edeb34907/programs/jupiter/src/account_structs.rs#L248
https://github.com/jup-ag/jupiter-aggregator-program/blob/652c2773e0d2afcb2c8b766a4f66a35edeb34907/programs/jupiter/src/account_structs.rs#L248
https://github.com/solana-labs/solana-program-library/blob/a1205a683c37c84b99d3a40ace130fae980387e6/token/program/src/processor.rs#L314-L333
https://github.com/solana-labs/solana-program-library/blob/a1205a683c37c84b99d3a40ace130fae980387e6/token/program/src/processor.rs#L314-L333

RoutePlanStep is both the final and the only output token. The contract enforces a slip-
page check solely on this final output token, without evaluating the intermediate steps. This
setup is generally sufficient when the route plan is intended to produce only a single output
token.

However, if the route plan becomes corrupted while still passing the slippage check, any
residual tokens in a shared token account might be lost for users. To mitigate this risk, we
recommend implementing a basic integrity check on the token steps when the swap ends:

1. Ensure the amount is zero for all steps except the final one.
2. Confirm that the consumed_amount is zero for the final step. (Note: Current code con-
straints make this violation impossible.)

Jupiter Team: Acknowledged, malformed route plan is a client responsibility.

The Jupiter aggregator program is CPUheavy andadditional validation to safeguardusers
is a nice to have but we believe we should not add any more “nice to have” for now.

Error in Calculating Slippage for Small Amount or Large Slippage

Severity: Informational Status: Fixed

Target: Smart Contract Category: Logic Error

get_minimum_out_amount uses this formula to calculate minimum amount:

let (minimum_amount, _) = u128::from(amount)

.checked_mul(FEE_DENOMINATOR.checked_sub(slippage_bps.into())?)?

.checked_ceil_div(FEE_DENOMINATOR)?;

Within inner checked_ceil_div , if the numerator is smaller than the denominator, it will
directly return None .

Suppose in theaforementioned formula, if amount * (FEE_DENOMINATOR - slippage_bps)

< FEE_DENOMINATOR , then checked_ceil_div will return None . Consequently,
get_minimum_out_amount will also return None , causing both route and
shared_accounts_route IX to fail with JupiterError::InvalidCalculation .

It is possible for this inequality to hold truewith a small amount and large slippage_bps

. However, we believe that even in such cases, the minimum amount calculated based on
these slippage parameters should also be reasonable.

Tomitigate this risk,we recommendaddingabasicNonecheck in get_minimum_out_amount

.

Jupiter Team: PR-164

Offside Labs: Fixed.

9 Jupiter

https://github.com/jup-ag/jupiter-aggregator-program/pull/164/commits/ffc0463afa6d1485556ae07c34acbd00f3388aff

Token-2022 Support Should Not Be Enabled in Exact OutMode

Severity: Informational Status: Fixed

Target: Smart Contract Category: Logic Error

In the implementation of the contract, the 3 dex swap CPIs (raydium , raydium_clmm ,
whirlpool) supported under the “exact out” mode only support spl-token and do not
support token-2022 . Therefore, it is unnecessary to include the token_2022_program

account and invoke the get_token_program_on_mint method in the IXs of the “exact out”
operation.

Moreover, according to current implementation of “exact out” swap, contract should calcu-
late the amount accurately for swap-in. However, the transfer fee extensions supported by
token-2022 can cause significant issues with this calculation.

Therefore, the “exact out” IX should avoid supporting token-2022 .

To mitigate this risk, we recommend removing get_token_program_on_mint calls in
exact out mode.

Jupiter Team: Check the effective in amount to prevent any invalid calculation to miss the
risk check. As a result user is safe we don’t need the extra token2022 checks or restricting
to token2022 without a fee extension. Fix Commit: PR-164

Offside Labs: Fixed. The mitigation has effectively handled the accounting of actual trans-
ferred input token amounts from user source token accounts.
Note: If it needs to add support for transfer fees for exact out mode in the future, please
ensure that the transfer fee is accurately calculated in the calculate_swap_in_amount

implementation. The current mitigation only ensures the actual consumption amount of
the input tokens, while the intermediate token consumption comes from pre-calculation.
Therefore, if the transfer fee causes the actual input amount in the intermediate process to
not match the pre-calculation, this may lead to the consumption of the original tokens in
the token accounts during the intermediate swap process.

Redundant PDA Signature in serum::create_open_orders IX

Severity: Informational Status: Fixed

Target: Smart Contract Category: Redundant Code

In create_open_orders IX, a signer_seeds is generated and passed to amm::serum::

init_open_orders . However, The signed PDA in this case refers to the open_orders

account, whose ownership has already been transferred to dex_program . Therefore, this
signer_seeds is no longer needed.

We recommend removing signer_seeds argument when invoking amm::serum::init_

open_orders .

Jupiter Team: PR-164

Offside Labs: Fixed.

10 Jupiter

https://github.com/jup-ag/jupiter-aggregator-program/pull/164/commits/b10b7ae64a3c098e760b9c9faf6619dc57b8408f
https://github.com/jup-ag/jupiter-aggregator-program/pull/164/commits/632894e600ff6aac071defee7619b5c9697cf839

5 Disclaimer

This audit report is provided for informational purposes only and is not intended to be used
as investment advice. While we strive to thoroughly review and analyze the smart contracts
in question, we must clarify that our services do not encompass an exhaustive security exam-
ination. Our audit aims to identify potential security vulnerabilities to the best of our ability,
but it does not serve as a guarantee that the smart contracts are completely free from security
risks.

We expressly disclaim any liability for any losses or damages arising from the use of this re-
port or from any security breaches that may occur in the future. We also recommend that our
clients engage in multiple independent audits and establish a public bug bounty program as
additional measures to bolster the security of their smart contracts.

It is important to note that the scope of our audit is limited to the areas outlined within our en-
gagement and does not include every possible risk or vulnerability. Continuous security prac-
tices, including regular audits and monitoring, are essential for maintaining the security of
smart contracts over time.

Please note: we are not liable for any security issues stemming from developer errors or mis-
configurations at the time of contract deployment; we do not assume responsibility for any
centralized governance risks within the project; we are not accountable for any impact on the
project’s security or availability due to significant damage to the underlying blockchain infras-
tructure.

By using this report, the client acknowledges the inherent limitations of the audit process and
agrees that our firm shall not be held liable for any incidents thatmay occur subsequent to our
engagement.

This report is considered null and void if the report (or any portion thereof) is altered in any
manner.

11 Jupiter

	About Offside Labs
	Executive Summary
	Summary of Findings
	Key Findings and Recommendations
	Pre-calculation of the Raydium AMM Is Inaccurate in
	Inaccurate Fee Calculation in apply_exact_out_fees_if_applicable
	Missing SyncNative When Token Is WSOL in set_token_ledger
	Informational and Undetermined Issues

	Disclaimer

